MUĞLA SITKI KOÇMAN UNIVERSITY

MME 2009 Metallurgical Thermodynamics I

Midterm Examination

04.11.2016 9.30-11.30

Questions

- 1- (20 points) 1 mole of liquid water at 25 C and 1 bar fills a rigid vessel. If heat is added to the water until its temperature reaches 50 C, what pressure is developed on the vessel? The average value of β between 25 and 50 C is 36.2*10-5/K. The value of κ at 1 bar and 50 C is 4.42*10-5/bar and is independent of P. The volume of liquid water at 25 C is 18.075 cm³/mol.
- 2- (20 points) Two moles of an ideal gas are contained adiabatically at 30 atm and 298K. The pressure is released to 10 atm and the gas undergoes a reversible adiabatic expansion as a result of which its volume increases four times. Calculate the internal energy change for this process. Cv=1.5R, Cp=2.5R
- 3- (20 points) Calculate the heat required to increase the temperature of 360 grams of ice from -10 C to 140 C.
- 4- (25 points) Sodium carbonate, Na₂CO₃, can be prepared by heating sodium hydrogen carbonate, NaHCO₃:

 $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(l \text{ or } g) + CO_2(g)$

Calculate the enthalpy change for the formation of 1 mole of sodium carbonate a) at 298 K and b) at 400 K and 1 atm. Is the reaction endothermic or exothermic at each temperature?

5- (15 points) The normal freezing point for pure copper is 1083 C but small droplets of liquid copper have been supercooled to 847 C before spontaneous solidification occurs. Calculate the enthalpy change for the solidification of copper at 847 C.

Universal gas constant

 $R = 8.3144621 \text{ J/mole.K} = 8.3144621 \text{ L.kPa/mole.K} = 8.3144621 \text{ m}^3.\text{Pa/mole.K} = 83.144621 \text{ L.mbar/mole.K} = 0.082057 \text{ L.atm/mole.K} = 8.2057*10^{-5} \text{ m}^3.\text{atm/mole.K} = 62.36368 \text{ L.mmHg/mole.K}$

Thermochemical Data

Substance	ΔH° (kJ/mol)	C _P (J/mol.K)	Latent heat (J/mol)
Cu(s)	0	22.65+0.00628T	13000 at 1356 K
Cu(l)	0	31.4	300400 at 2835 K
H ₂ O(s)		37.116	6010 at 273 K
H ₂ O(l)	-285.83	75.312	40660 at 373 K
$H_2O(g)$	-241.83	41.8+0.00564T	
CO ₂ (g)	-393.5	22.24+0.0598T - 349900/T ²	
NaHCO ₃ (s)	-947.7	87.61	
$Na_2CO_3(s)$	-1130.8	112.3	

Table of unit conversion

Quantity	Conversion	Quantity	Conversion
Length	1 m = 100 cm = 3.28084(ft) = 39.3701(in)	Volume	$1 \text{ m}^3 = 10^6 \text{ cm}^3 = 10^3 \text{ liters}$ = $35.3147(\text{ft})^3$ = $264.172(\text{gal})$
Mass	$1 \text{ kg} = 10^3 \text{ g}$ = 2.20462(lb _m) $1 \text{ N} = 1 \text{ kg m s}^{-2}$	Density	1 g cm ⁻³ = 10^3 kg m ⁻³ = $62.4278(lb_m)(ft)^{-3}$
Pressure	$= 10^{5} (dyne)$ $= 0.224809 (lb_f)$ 1 bar = 10^{5} kg m ⁻¹ s ⁻² = 10^{5} N m ⁻² $= 10^{5}$ Pa = 10^{2} kPa $= 10^{6} (dyne)$ cm ⁻² $= 0.986923 (atm)$ $= 14.5038 (psia)$	Energy	$1 J = 1 kg m^{2} s^{-2} = 1 N m$ $= 1 m^{3} Pa = 10^{-5} m^{3} bar = 10 cm^{3} bar$ $= 9.86923 cm^{3} (atm)$ $= 10^{7} (dyne) cm = 10^{7} (erg)$ $= 0.239006 (cal)$ $= 5.12197 \times 10^{-3} (ft)^{3} (psia) = 0.737562 (ft) (lb_{f})$ $= 9.47831 \times 10^{-4} (Btu) = 2.77778 \times 10^{-7} kWhr$
	= 750.061(torr)	Power	$1 \text{ kW} = 10^3 \text{ W} = 10^3 \text{ kg m}^2 \text{ s}^{-3} = 10^3 \text{ J s}^{-1}$ $= 239.006(\text{cal}) \text{ s}^{-1}$ $= 737.562(\text{ft})(\text{lb}_{\text{f}}) \text{ s}^{-1}$ $= 0.947831(\text{Btu}) \text{ s}^{-1}$ $= 1.34102(\text{hp})$